
Results on the Fitness and Population based Fault Tolerant Approaches using a
Reconfigurable Electronic Device

Didier Keymeulen Adrian Stoica Ricardo Zebulum Vu Duong

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive

didier.keymeulen@jpl.nasa.gov

Abstract. The paper presents and compares two ap-
proaches to design fault-tolerant evolvable hardware:
one based on the fitness definition and the other based
on the population statistics. The fitness approach
defines, in an explicit way, the faults that the compo-
nent may encounter during its life time and evaluates
the average behavior of the individuals. The popula-
tion approach uses the implicit information of the
population statistics accumulated by the genetic algo-
rithm over many generations. The paper presents
experiments done using both approaches on a fine-
grained CMOS Field Programmable Transistor Ar-
ray (FPTA) architecture for the synthesis of a fault-
tolerant XNOR digital circuit. Experiments show that
the evolutionary algorithm is able to find a fault-
tolerant design for the XNOR function that can re-
cover functionality when lost due to not a-priori
known faults, by finding new circuits configurations
that circumvent the faults. Our preliminary experi-
ments show that the population approach designs a
fault-tolerant circuit with a better performance and
in less computation than the fitness based approach.

1. Introduction

Long-term survivability of space systems, as required
for example by outer solar system exploration and
missions to comets and planets with severe
environmental conditions, has recently been approached
with new ideas, such as the use of biology-inspired
mechanisms for hardware adaptation. The application of
evolution-inspired formalisms to hardware design and
self-configuration lead to the concept of evolvable
hardware (EHW). In the narrow sense EHW refers to
self-reconfiguration of electronic hardware by
evolutionary/genetic reconfiguration mechanisms. In a
broader sense EHW refers to various forms of hardware,
from sensors and antennas to complete evolvable space
systems that could adapt to changing environments and,
moreover, increase their performance during the
mission.

EHW can bring one main benefit to spacecraft
survivability by preserving existing functions, in
conditions where hardware is subject to faults, aging,
temperature drifts and radiation, etc. The fault-tolerant

property is extremely important for electronic
components used in the space and nuclear industry
where the components are continuously subjected to ion
radiation. As the limits of VLSI technology are pushed
towards sub-micron levels in order to achieve higher
levels of integration, devices become more vulnerable to
radiation induced errors. These radiation induced erros
can lead to system failure. One of the goals of the future
electonics is to design radiation immune electronic
components [20].

We propose to produce electronic systems that are
inherently insensitive to faults such as silicon defects by
using evolution in hardware to design fault-tolerant or
highly reliable systems. The evolution is even able to on-
line self-repair by changing the circuit configuration in
short delay or off-line self-repair by pushing further the
evolution and exploiting defective components as if they
were working parts [15] [16]. This paper reports on
experiments that illustrate how evolutionary algorithms,
using two different approaches, can design fault-tolerant
digital circuit and recover functionality when lost due to
faults, by finding new circuit configurations that
circumvent the faults immediately in hardware.

A variety of circuits have been synthesized through
evolutionary means. For example, Koza used Genetic
Programming (GP) to grow an “embryonic” circuit to
one that satisfies desired requirements [1]. This approach
was used and extended for evolving a variety of circuits,
including filters and computational circuits [2]. On-chip
evolution was demonstrated for the first time by Higuchi
[27]. Later Thompson [3] used an FPGA as the
programmable device, and a Genetic Algorithm (GA) as
the evolutionary mechanism and Kajitani [26] used a
dedicated hardware integrating the GA computation and
a reconfigrable hardware. More details on current work
in evolvable hardware are found in [4], [5], [6], [7], [24].
More recently, evolutionary experiments were performed
on Field Programmable Analog Arrays [18] and custom-
designed ASIC [11][25]. Evolutionary algorithms have
also been used with success for designing fault-tolerant
system, such as robotics [15][21] and recently also in
electronics [16][23][22].

This paper is organized as follows: Section 2 presents
the fault tolerant principles and the evolutionary method
to obtain fault-tolerant systems. Section 3 presents the
FPTA concept and the experimental setup. Section 4
describes the fault tolerant experiments using a cascaded

FPTAs to design a XNOR logical function. Section 5
presents some lessons learned from the experiments and
section 6 concludes the paper.

2. Fault Tolerant Principles for Evolvable
Hardware

The definition of fault tolerance is simply that a fault in
a component does not cause the overall system to
malfunction [14]. The malfunction is in general a loss of
service that can be total or partial as for example on a
computer network. The characteristic of fault tolerance is
not absolute. The question is one of degree: how much
tolerance to faults is required varies from application to
application. In our electronic experiment, the
malfunction is calculated by the mean square error
between a desired output DC characteristic and the
actual output.

Fault tolerant systems are evaluated by two criteria:
their reliability and their availability. The reliability
measures how long can the system operate before
malfunctioning even in the presence of faulty
components. The availability measures the expected
proportion of time that the system will be available for
use. In our experiment on electronic device, the
reliability of the circuit is measured by evaluating the
malfunction of the electronic device when injecting
faults. The availability is measured by calculating the
time needed by the evolution process to retrieve a
satisfactory circuit design.

Two principles for designing fault-tolerant systems can
be applied for evolutionary design: redundancy and on-
line repair. The redundancy concept is well understood:
if part of a system fails, there is an "extra" or spare" that
is able to operate in the place of the failed component
such that the operation of the system is uninterrupted.
The on-line repair imposes that the system with a failed
component should be made unavailable as less as
possible while the system is in service. These two
principles can be applied to fault-tolerant evolutionary
design. First, redundancy is obtained by using a circuit
with a large number of connections and elements
(transistors). Second, the on-line repair is obtained by
searching, in the population, for a correct circuit, or by
running the GA during a limited number of generations.

Two different approaches were proposed to build fault
tolerant system using evolutionary algorithms:
1. Fitness Based Fault-Tolerant Design: it consists of

injecting during the evolutionary process, the faults
known a-priori that may occur in the circuit during its
life-time [19].

2. Population Based Fault-Tolerant Design: it consists

of extracting from a population of evolved circuits, the
individual which adequately performs a desired func-
tionality in the presence of a fault and eventually con-

tinue the evolution to attain a performance equal to
that before the fault occurred [16].

While in the population based approach no previous

knowledge of the faults that may occur is assumed, the
fitness based approach requires a-priori knowledge of the
defects. We will show in this paper that the population
fault-tolerant approach using the population statistics
accumulated by the genetic algorithm performs better
than the fitness fault-tolerant approach. In the following
section we present the FPTA and the evolutionary
platform on which we conduct the experiments. Then the
e periments and their results are described.

3. Test Bed for FPTA

The idea of a programmable transistor array was
introduced first in [11]. The FPTA cell is an array of
transistors interconnected by programmable switches.
The status of the switches (ON or OFF) determines a
circuit topology and consequently a specific response.
Thus, the topology can be considered as a function of
switch states, and can be represented by a binary
sequence, such as “1011… ”, where by convention one
can assign 1 to a switch turned ON and 0 to a switch
turned OFF. The FPTA architecture allows the
implementation of bigger circuits by cascading FPTA
cells. To offer sufficient flexibility the module has all
transistor terminals connected via switches to expansion
terminals (except those connected to power and ground).
Figure 1 illustrates an example of a FPTA cell consisting
of 8 transistors and 24 programmable switches. In this
example the transistors P1-P4 are PMOS and N5-N8 are
NMOS. A test chip implementing the FPTA architecture
was developed. The programmable switches were
implemented with transistors, acting as simple T-gate
switches. Each chip contains one FPTA module and was
fabricated as a Tiny Chip through MOSIS, using 0.5-
micron CMOS technology. The test board with four
chips mounted on it is illustrated in Figure 3.

S7
P1

S4

S1

P2

V +

S12

S5

P4

S14

S15

S22

N6

N8

S24S23

N 7

S20

N 5
S11

S18

S17

S6
S9

S8
S2

S3
P3

S13
S10

S16

S19
S21

V -
Figure 1. Module of the Field Programmable Transistor Array

Cell

An evolutionary design tool was developed to facilitate
experiments in hardware evolution [17]. The tool
illustrated in Figure 2 uses the public domain Parallel
Genetic Algorithm package, PGAPack and an evovable
hardware test bed built around LabView. An interface
code links the GA with the hardware where potential
designs are evaluated, while a GUI allows easy problem
formulation and visualization of results. At each
generation the GA produces a new population of binary
chromosomes, which get converted into configuration
bits for the reconfigurable devices. Configuration bits are
further downloaded into the hardware device by
LabView. Circuit evolutionary synthesis directly on the
chip became possible at an expected accelerated pace of
over two orders of magnitude compared to the simulation
on a workstation

Figure 2. Environment for evolutionary hardware design.

4. Fault-Tolerant Experiments

The aim of this experiment was to test and compare the
reliability and availability of a circuit design obtained by
respectively a population and a fitness based evolution.
The experiment setup consists of two cascaded FPTAs
each programmed by 24 internal swiches. The 2 FPTA
are connected together by 6 external wires controlled by
6 programmable switches (Figure 3). Each FPTA is
connected through 4 programmable switches to two input
voltages, one current bias and one output load. There are
a total of 62 switches controlling the 2 cascaded FPTAs
and representing the chromosome for the GA (Figure 4).

Figure . 3. A test board with 2 cascaded FPTAs (The two
FPTAs used in the experiment are on the left side of the pic-

ture)

The experiment consisted of the evolutionary design of
a XNOR logical function using two square wave voltage
inputs, at frequency of 50Hz and 100Hz respectively
(Figure 5). The fault tolerance test encompassed the
introduction of six single faults on the external wires
connecting the 2 FPTAs by imposing the switches to be
ON (short fault) or OFF (cut fault). The evaluation
function is the MSE between the output response of the
circuit obtained by evolution and the ideal output signal
of a XNOR logical function.

The experiments used a Genetic Algorithm (GA) with
the following parameters: population 200, tournament
selection of size 10; uniform mutation probability: 0.04,
uniform cross-over probability: 0.7, elite strategy: 10%,
fitness function: mean square error. The GA obtained the
XNOR response in 60 generations, taking 3 minutes.

1. Population Fault-Tolerant Evolution

Evolution started by randomly initiating the population
chromosomes, which were transformed into connection
patterns. These are downloaded into the chips and the
output of the generated circuits was directly monitored
and compared with the desired DC XNOR response.
After 60 generations a circuit that satisfied the
requirements was found and is shown in Figure 6.

Graphical
User Interface

PGAPACK
Parallel

Genetic Algorithm

Evolutionary Design Environment

Genes

Desired
Data

4 PTAs
controlled by

LabView

Configuration
Bits

Hardware
Execution

Data
from
Data

Acquisition
Board

Fitness of
individual

device/circuit

Figure . 4. Cascaded FPTAs used to design a fault-tolerant XNOR circuit with 62 switches. The 6 connections indicated by a circle
are subjected to faults. (CUT: switch OFF: fault 0, fault 3, fault 5) (SHORT: switch ON: fault 1, fault 2, fault 4)

Figure 5. Input Signal 1(100Hz), Input Signal 2 (50Hz) and the Output Signal of the XNOR circuit configuration. (X

axis: 0.25 msec/unit; switches: 1Volt/unit).

Figure. 6. Best Circuit Design at Generation 60

We inject five faults by cuting (set the switch OFF:
fault0, fault3, fault5) or shorting (set the switch ON:

fault1, fault2, fault4) one by one the external connections
between the two FPTAs. Figure 7 shows that the best
circuit configuration does not achieve the XNOR

functionality for faults 2, 3, 4, 5. Looking in the
population at generation 60, we found mutants with
better responses for faults 2 and 5 as shown in figure 8
and 10. However we could not find mutants with
acceptable performance for fault 3 and 4 (figure 10). We
then re-started the GA with the population of its last run
evaluating the individuals under fault 3 and fault 4
conditions [15]. In case of fault 4, and starting with the
last available population, it took half less generations (30
generations) to recover than when starting with a
random population as shown on figure 9. In figure 10 we
compare the performance of the best circuit and the
mutants found for each fault. It illustrates that the
population approach is able to find on-line a circuit
configuration to resolve the faults.

Figure. 7. Output of the Best Circuit Configuration obtained
by population based evolution when 6 faults are injected. (The

response are shifted in time in all the figures to enhance the
illustration)

Figure. 8. Response of best performing mutants for each fault.
Further evolution was needed to find a XNOR circuit for fault3

and fault 4.

Figure 9. Fitness through generation for Population based and
Fitness based fault-tolerant approach.

Fig. 10. Comparison between the Fitness of the Best Circuit
and Mutant Circuits obtained by a population based evolution.

2. Fitness based Fault-Tolerant Evolution

In the fitness based fault-tolerant experiment, the
chromosomes are evaluated in four different circuit
states: one without fault, and three with a single fault.
The three faults are fault 2 (switch ON), fault 3 (switch
OFF) and fault 5 (switch OFF). The fitness of the
chromosome is the average of the four evaluations. After
30 generations, the genetic algorithm finds a circuit that
best satisfied the requirement (Figure 9). The circuit
configuration is shown on Figure 11.

Generations

Fi
tn

es
s

0 15 30 45 60 75 90 105 120
0

0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

No Fault

1 Fault is Injected

Free Design Fitness
Fault Tolerant Fitness

Time, msec

V
ou

t,
V

ol
t

0 2.5 5 7.5 10 12.5 15 17.5 20
-0.8

0

0.8

1.6

2.4

3.2

4

4.8

5.6

Fault 0
Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
No Faults

Time, msec

V
ou

t,
V

ol
t

0 2.5 5 7.5 10 12.5 15 17.5 20
-0.8

0

0.8

1.6

2.4

3.2

4

4.8

5.6

Fault 0
Fault 1
Fault 2
Fault 3 (Repaired)
Fault 4 (Repaired)
Fault 5
No Faults

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Fault Fault 0 Fault 1 Fault 2 Fault 3 Fault 4 Fault 5

Best Circuit
Mutant
Self Repaired
Evolution Speedup

We then inject six faults. As expected the circuit
achieves the XNOR functionality for each of the three
faults included explicitly into the fitness function (fault
2, fault 3, fault 5) (Figure 12). The circuit is also able to
achieve the XNOR functionality with faults not included
into the fitness function such as fault 0, fault 1 and fault
4 but with a lower performance for fault 0 (Figure 13).
Finally we applied inverse faults to the best circuit
configuration. It shows that the circuit configuration
cannot achieve the XNOR functionality when fault 2 is
inverse.

Figure 13. Comparison between the fitness of best and
mutant configuration obtained by a fitness based evolu-

tion.

Figure 11. Circuit Schematic of the best individual obtained by fitness based approach.

Figure 12. Output of the best circuit configuration obtained by fitness based evolution when 9 faults are injected

Time, msec

V
ou

t,
V

ol
t

0 2.5 5 7.5 10 12.5 15 17.5 20
-0.8

0

0.8

1.6

2.4

3.2

4

4.8

5.6

Fault 0
Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 2 Inv
Fault 3 Inv
Fault5 Inv
No Faults

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Fault Fault 0 Fault 1 Fault-
Tolerant 2

Fault-
Tolerant 3

Fault 4 Fault-
Tolerant 5

Inverse
Fault 2

Inverse
Fault 3

Inverse
Fault 5

Fi
tn

es
s

Fault Tolerant Circuit
Mutant

6. Lessons Learned

We compared two approaches for designing a fault-
tolerant field programmable transistor array and we
conclude from our preliminary experiments that the
population approach offers the following advantages
compared to the fitness approach.

• The population approach builds circuits with a better

performance in a no-fault situation than the circuit
obtained by the fitness approach, because, in the
later case, the evolution is constrained by the faults
imposed to the circuit. But the fitness approach has
the advantage of achieving a single circuit robust to
multiple faults.

• The population approach offers an on-line self-repair

mechanism able to find circuit in the population
with better performance than the circuits obtained by
the fitness approach. Although the best circuit con-
figuration for a non-fault situation is not robust, the
population contains mutant configurations able to
achieve the desire functionality with the faulty cir-
cuit. They even display a better performance than
the best configuration and mutants obtained by the
fitness approach.

• The population approach offers an off-line self-repair

mechanism able to self-heal circuit in few more gen-
erations with better performance than the circuit ob-
tained by the fitness approach.

• The population approach requires less computation

than the fitness approach because in the later case
the genetic algorithm must evaluate the circuits with
the faults.

These experiments open the way for further

investigation of the property of fault-tolerant
evolutionary techniques applied to electronics such as the
behavior of the fault-tolerant system when arbitrary and
large number of fauts are injected and the unavaibility
time is limited. The methodoly can also be addressed by
combining the population and the fitness approaches, or
by including in a more explicit way redundancy in the
system such as explored in the "embryological"
development approach [13].

8. Conclusion

The paper demonstrates the power of evolutionary
algorithms to design digital fault-tolerant circuit. It
compares two methods to achieve fault-tolerant design

one based on fitness and the other based on population.
It shows that although the classic fault-tolerant design
approach is able to create a reliable circuit design by
evaluating the behavior of the circuit when well known
faults are injected during the evolutionary process, better
circuit performance and in less computation time for a
same fault-tolerant degree is achieved by allowing the
evolutionary design process to be free of all faults
constraints.

Acknowledgements

This research was performed at the Center for
Integrated Space Microsystems, Jet Propulsion
Laboratory, California Inst. of Technology and was
sponsored by the Defense Advanced Research Projects
Agency (DARPA) under the Adaptive Computing
Systems Program.

Reference

[1] J. Koza, F.H. Bennett, D. Andre, and M.A Keane, “Auto-
mated WYWIWYG design of both the topology and compo-
nent values of analog electrical circuits using genetic pro-
gramming”, Proceedings of Genetic Programming Confer-
ence, Stanford, CA , pp. 28-31, 1996

[2] J. Lohn, J. and S. Colombano, “Automated Analog Circuit
Synthesis using a linear representation”, M. Sipper, D.
Mange and A. Perez-Uribe (Eds.) Evolvable Systems: From
Biology to Hardware, Springer-Verlag Lecture Notes in
Computer Science Berlin 1998, pp. 125-133

[3] A. Thompson, “An evolved circuit, intrinsic in silicon,
entwined in physics”. In International Conference on
Evolvable Systems. Springer-Verlag Lecture Notes in Com-
puter Science, 1996, pp. 390-405.

[4] E. Sanchez and M. Tomassini (Eds.) Towards Evolvable
Hardware, LNCS 1062, Springer-Verlag, 1996

[5] T. Higuchi, M. Iwata, and W. Liu (Eds.) Evolvable Sys-
tems: From Biology To Hardware, Proc. of the First Inter-
national Conference, ICES 96, Tsukuba, Japan, Springer-
Verlag Lecture Notes in Computer Science, 1997.

[6] M. Sipper, D. Mange, A. Perez-Uribe (Eds.) Evolvable
Systems: From Biology To Hardware, Proc. of the Second
International Conference, ICES 98, Lausanne, Switzerland,
Springer-Verlag Lecture Notes in Computer Science, 1998.

[7] J. R. Koza, F. H. Bennett III,, D. Andre and M. A. Keane,
Genetic Programming III – Darwinian Invention and Prob-
lem Solving, Morgan Kaufman, San Francisco, 1999

[8] E. Vitoz, Analog VLSI Processing: Why, Where and How,
Journal of VLSI Processing, Kluwer, 1993

[11] Stoica, A. Toward evolvable hardware chips: experiments
with a programmable transistor array. Proceedings of 7th In-
ternational Conference on Microelectronics for Neural,
Fuzzy and Bio-Inspired Systems, Granada, Spain, April 7-9,
IEEE Comp Sci. Press, 1999.

[12] Layzell, P. A New Research tool for Intrinsic Hardware
Evolution. In Proceedings of ICES’98, Lausanne, Switzer-
land, 1998

[13] P. Marchal et al. Embryological development on silicon. In
R. Brooks and P. Maes, editors, Artificial Life IV, pages
365-366. MIT Press, 1994.

[14] White R. and Miles F. Principles of Fault Tolerance. In
Proceedings of Eleventh Annual Applied Power electronic
Conference and Exposition, pages 18-25, Vol.1. IEEE
Press, 1996.

[15] Thompson A. Evolving fault tolerant systems. In Proceed-
ing of the First Interntional Conference on Genetic Algo-
rithms in Engineering Systems: Innovations and Applica-
tions, page 524-529. IEEE Press, 1995.

[16] Layzell, P. Inherent Qualities of Circuits Designed by
Artificial Evolution: A preliminary study of populational
fault tolerance. In Proceedings of the First NASA/DoD
Worshop on Evolvable Hardware, pages 85-86. IEEE Com-
puter Society Press, 1999.

[17] Stoica A., Keymeulen D., Tawel R., Salazar-Lazaro C., Li
W. Evolutionary Experiments with a Fine-Grained Recon-
figurable Architecture for Analog and Digital CMOS Cir-
cuits. In Proceedings of the First NASA/DoD Worshop on
Evolvable Hardware, pages 76-84. IEEE Computer Society
Press, 1999.

[18] Zebulum, R. et al., Analog Circuits Evolution in Extrinsic
and Intrinsic Modes. In Proc. of the Second International
Conference, ICES 98, Lausanne, Switzerland, Springer-
Verlag Lecture Notes in Computer Science, 1998, pp 154-
165

[19] Devarayanadurg G et al., Test Set Selection fro Structural
Faults in Analog IC's. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp 1026-
1039, Vol.18, No. 7, July 1999. IEEE Press.

[20] Niranjan, S. and Frenzel, J.F., A comparison of fault-
tolerant state machine architecture for space-borne electron-
ics. In IEEE Transactions on Reliability, pp 109-113,
Vol.45, No. 1, March 1996. IEEE Press.

[21] D. Keymeulen, M. Iwata, Y. Kuniyoshi and T. Higuchi.
On-line evolution for a self-adapting robotic navigation sys-
tem using evolvable hardware. Artificial Life, 4(4):359-393,
1999. Special Issue on Evolutionary Robotics. MIT Press.

[22] Ortega C. and Tyrrell A. Reliability analysis of self-
repairing bio-inspired cellular hardware. In Proceedings of
IEE Half-day Colloquium on Evolutionary Hardware Sys-
tems, pp 2/1-2/5, 2 June 1999. IEEE Press.

[23] Zebulum, R et al. Evolvable Hardware: Automatic Synthe-
sis of Analog Control Systems. In IEEE Aerospace Confer-
ence, Big Sky, Montana, March 14-25, 2000. IEEE Press
.(submitted and approved)

[24] Higuchi T. et al. Real-World Applications of Analog and
Digital Evolvable Hardware. In IEEE Transactions on Evo-
lutionary Computation, Vol.3, No. 3, September 1999.
IEEE Press.

[25] M. Murakawa, S. Yoshizawa, I. Kajitani, Xin Yao, N.
Kajihara, M. Iwata and T. Higuchi The GRD Chip: Genetic
Reconfiguration of DSPs for Neural Network Processing. In
IEEE Transactions on Computers, vol. 48, no. 6, pp.628-
639, 1999. IEEE Press.

[26] I. Kajitani, T. Hoshino, N. Kajihara, M. Iwata and T.
Higuchi. An Evolvable Hardware Chip and Its Application
as a Multi-Function Prosthetic Hand Controller. In Proc. of
the 16th National Conference on Artificial Intelligence
(AAAI-99), pp. 182-187, 1999. AAAI Press.

[27] Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H.,
and Furuya, T. Evolving hardware with genetic learning: A
first step towards building a Darwin machine. In Meyer,
Jean-Arcady, Roitblat, Herbert L. and Wilson, Stewart W.
(editors). From Animals to Animats 2: Proceedings of the
Second International Conference on Simulation of Adaptive
Behavior. pp 417 - 424. 1993. Cambridge, MA: The MIT
Press.

